

COSIC

Design Considerations for EM Pulse Fault Injection

<u>Arthur Beckers</u>, Masahiro Kinugawa, Yuichi Hayashi, Daisuke Fujimoto, Josep Balasch, Benedikt Gierlichs, and Ingrid Verbauwhede

CARDIS 2019

What is EM-fault injection

Injection of electromagnetic field into a target IC

Properties:

- + Locality \rightarrow relatively good spatial resolution (100um mm)
- + In theory no decapsulation needed \rightarrow non invasive
- + Relatively good timing resolution
- + Can be done cheaply (100 euro)
- Completely black box behaviour of the device

Injected fields:

- E-field
- H-field
- Combination of both

H-field EM pulse injection

H-field probe characteristics:

- o Solenoid shape
- Air or ferrite core
- o 0.1-10mm diameter
- $\circ~$ 1 20 windings

H-field EM pulse characteristics:

- \circ ns rise times
- o Currents in ampere range

Magnetic flux density :
$$B = \frac{k\mu_0 N}{2l} I\left[\frac{l}{\sqrt{l^2 + r^2}}\right]$$

EM-pulse injection modelling

4

EM fault injection setup

Switching element:

- Fast rise time
- Small parasitics
- Consistent timing/ controllable
- E.g Mosfet, IGBT, bipolar transistor,

Triggering device:

- High timing resolution
- Small amount jitter
- Power supply
 - 100-500V DC
- Injection probe :
 - Characteristics are target dependent

Characterization strategy

- Goal: illustrate how different passive components impact pulse response
- Test circuit:
 - Gas discharge tube switch (GDT) → 370V breakdown voltage
 - 47pF capacitor
 - 2mm ferrite core
 - 2 windings
- Test method:
 - 50Ω microstripline

Microstripline measurement method

50Ω microstripline response

Probe characterization

- > Parameters injection circuit:
 - Capacitance
 - Ferrite core diameter
 - Number of windings
 - Ferrite type
 - Winding geometry

Probe characterization

Probe characterization

EM-pulse faulting mechanism

[1] Ordas et al., Evidence of a larger em-induced fault model. CARDIS 2015

Experimental validation

Goal:

demonstrate the impact of the pulse shape on the fault pattern

Target device:

- STM32F411
- Clock frequency: 100MHz
- Not decapsulated

Target code:

- STM {r0-r9} (store multiple)
- Data: 0x55555555

EM-fault injector

- Switching element:
 - MOSFET, n-channel
- Injection probe :
 - 0,75mm
 - 4 windings
- Triggering device:
 - Signal generator + Mosfet driver
- > Power supply:
 - 100V 600 V
- Passive components:
 - C1: 1000 pF
 - R2: 0.22 Ω
 - R3: 10 Ω

Experimental results

Conclusion

- Illustrated the impact of the different components on the pulse shape
- Built an EM-pulse fault injection circuit based on the previous findings
- Demonstrated the effect different pulse shapes can have on a fault injection campaign